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ABSTRACT

The purpose of this study was to further characterize the renal response

to central volume expansion using the ground-based model of lower body positive

pressure (LBPP). As a ground-based model for weightlessness, the response of

the chair-trained squirrel monkey (Saimlrl Sclureus) to LBPP was evaluated in

a length of study similar to a typical Space Shuttle mission (7 days). Results

were compared to time control experiments that included chalr-slttlng without

exposure to LBPP. Adult male squirrel monkeys (600-1000g) were chronically

implanted with arterial and venous catheters to facilitate maintenance infusion

of saline, monitoring of vascular pressures, and blood sampling; urine was

collected via a condom-llke tube. Animals were placed in a speclally-desiEned

metabolism chair for two days prior to increasing air pressure in the lower

chamber of the chair thus exposing the animal to 20 mmHg pressure from the waist

down. Individual monkeys were subjected to both a LBPP and tlme-control

protocol. Urine volume and sodium excretion were significantly increased the

first day of LBPP with most of this response occurring in the first 6 to 12

hours. From the second to the seventh day of LBPP, urinary excretion rates for

sodium and water were not different from chalr-slttlng controls. A significant

negative sodium and water balance was observed on the first day of LBPP and was

not observed in tlme-controls. Removal of the stimulus resulted in a modest

conservation of sodium and water. The renal responses were not associated with

any changes in plasma aldosterone levels. We conclude that chronic exposure

to LBPP results in an acute diuretic and natrluretlc response independent of

changes in plasma aldosterone concentrations and produces a chronic reduction

in fluid volume lasting the duration of the stimulus.
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INTRODUCTION

Physiological responses to central volume expansion produced by exposure

to the hypogravlc environment of space have not been well characterized although

it is clear that weightlessness induces a shift of fluid from the lower

extremities toward the upper body (i, 9, I0, 15, 17). The relative lack of

specific information is in part due to operational considerations which have

limited spaceflight data collection to the pre-, mid-, or post-fllght periods,

thus missing the critical early hours during which acute adaptation occurs.

Interpretation of available In-fllght data from human subjects has been further

complicated by voluntary fluid restriction pre-fllght, variable in-fllght

activity, and the occurrence of space motion sickness. Nonetheless, evidence

of early in-fllght reductions in body welght (II) and of post-fllght body fluid

volume contraction, fluid and electrolyte conservation and orthostatlc

intolerance (i, 9, I0, 15, 17) have led to the hypothesis that a reflex renal

dluresls and natrluresls occurs early in spaceflight in response to the cephalad

fluid shift and the perception of an overfilled circulation. There is evidence

to suggest that cardiovascular adjustments to central volume expansion induced

during spaceflight are incomplete and a sustained hypervolemla may persist

throughout the term of exposure to Og although further investigation is needed

to confirm this possibility (I, 9, i0, 13, 15, 17).

To address these issues in an earthbound setting, human and animal models

using head-out water immersion (3, 4, 7, 8, 18, 19, 22), bedrest (7), and

head-down tilt (5, 20, 24) have been developed to simulate the central volume

expansion of weightlessness. Studies employing these models have yielded

extensive although conflicting data on the nature and mediators of the renal

response. Unfortunately, the two models most commonly studied, water immersion

0



2

and head-down tilt, are not ideally suited to chronic experimentation and have

been unable to adequately address the question of whether or not the body

achieves a new steady-state equilibrium prior to removal of the stimulus.

Our laboratory has developed a primate model suitable for study of both the

short- and long-term physiological mechanisms underlying the fluld-electrolyte

response to Og exposure. A continuous lower body positive pressure (LBPP) is

used to induce a cephalad fluid shift In squirrel monkeys. In a previous study

using this model, LBPP produced a dluresls and natrluresls that was sustained

for the duration of the four day experiment (12). The purpose of the present

study Is to extend the initial investigation into the renal response to central

volume expansion produced by LBPP in primates. We evaluated the excretory

response of the chalr-tralned squirrel monkey to LBPP in a length of study chosen

to be similar to a typical Space Shuttle Mission, i.e. 7 days. Furthermore,

results were compared to time control experiments that included chalr-slttlng

but without exposure to LBPP.

#

METHODS

All experiments were performed in conscious, chronically catheterized, adult

male squirrel monkeys (Salmlrl Sclureus) (body wt 600-1000g)o Venous and

arterial catheters constructed of renothane (0.025" id; 0.040" od) attached to

tygon tubing (0.025" Id; 0.040" od) were implanted during a sterile operative

procedure. Antlbiodlc (50 mg/kg oxacllln), atropine (0.02 mg/kg), and dlazepam

(I mg/kg) were given prior to induction of anesthesia with sodlumpentobarbltal

(I0 mg/kg). The renothane portion of the venous catheter was Inserted into the

thoracic vena cava via the external lllac vein so that the tip of the catheter

was above the dlaphram and below the right atrium. Arterial catheters were
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inserted into the abdomenal aorta through the internal lliac artery with the tip

being Just distal to the renal arteries. Placement of catheters was confirmed

by post-surgical x-ray of contrast-filled catheters. The FVC portions of the

catheters were passed through the back muscle, tunneled subcutaneously, and

exposed to the exterior through separate sites in the upper back of the animal.

The distal ends of the catheters were plugged with sterile stainless obturators

and the coiled catheters stored in an inside pocket of an open nylon mesh Jacket

worn continuously. The catheters contained a i:I 50% dextrose:heparlnized saline

(I00 unlts/ml) solution to maintain patency and retard bacterial growth. A blood

sample was cultured biweekly to monitor for catheter sterility. Animals were

treated with intramuscular injections of gentamicln (4 mg/kg) for 5 days and

oxacllln (I0 mg/kg) for i0 days post-surgery.

Seven animals underwent both a 7-day experimental study (with LBPP) and a

7-day time control study (without LBPP) in random order and at least 3 weeks

apart. Animals were trained to sit for up to I0 days in a specially designed

metabolism chair (Fig. i). When each study began, previously trained animals

were placed in a metabolism chair within a llght-regulated isolation chamber.

The seating perch was cushioned with a waterbag and an adjustable footrest was

positioned to allow the animal to squat in a comfortable, natural position. A

latex urine collection tube was fit over the penis and scrotum. The distal end

of the tube was enlarged to act as a reservoir and was attached to a solenoid

valve at the base of the chair. Urine was released via a conduit into a fraction

collector below the isolation chamber. Urine collection tubes contained mineral

oil to prevent evaporation and 0.02 mg of sodium azlde to inhibit bacterial

growth. The solenoid valve and fraction collector were both driven by timed

computer signals (DEC MINC II/23). Arterial and venous catheters were connected
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to sterile extension tubing (PVC 0.025"id; 0.040" od) which were then connected

to sterile pressure transducers (HP # 1090). Lines were maintained patent by

constant infusion of heparlnlzed saline (i0 units/ml; 2.7 ul/mln/llne). The

lower chamber below the animal's waist was sealed tight with a custom-fltted

periabdomenal foam cuff. The animal was allowed to equilibrate in isolation for

2&-30 hours prior to beginning the data collection protocol.

Animals were provided with food (Teklad TD75282 SKF diet with 10% cottonseed

oll and vitamin D) and tap water ad llbldum with daily intake of both being

determined gravlmetrically. A 12:12 L:D cycle was maintained by providing

illumination at 600 lux from 08:00 to 20:00 each day. The animals were not

disturbed while in the isolation chambers except during food and water

measurement and a daily health status check.

Data collection was started at 14:00 on the day following the equilibration

period (Day 0). Urine was collected every I or 2 hours and central venous and

arterial pressures measured every 15 minutes. Arterial blood samples (I ml) were

obtained at approximately 13:00 each day and at 15 mln after the onset of LBPP.

Each blood sample was drawn into a chilled tuberculin syringe containing 50 ul

of EDTA (30 mg/ml). Blood was immediately transferred to a prechilled, sterile

tube, capped and centrifuged at 2500g for 5 mln at 4°C. Plasma was withdrawn and

immediately stored at -30°C. Red blood cells were resuspended in 0.6 ml of

sterile saline, gently mixed and relnfused into the animal.

When animals were undergoing the experimental protocol, a 20 mmHg positive

pressure was introduced into the lower chamber of the metabolism chair in a

step-wise fashion over a 10-15 mln period at 14:00 of the first experimental day

(Day I, after the equilibration day and Day 0). Lower body positive pressure

was maintained for a 7-day period. At 14:00 on the last day, LBPP was withdrawn
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in a step-wise fashion over I0-15 min. Data collection was continued during a

final recovery period of 24 hours (Day 8). The time control protocol was

identical except that no LBPP was applied.

Positive air pressure was regulated by inflow and outflow of pressurized

room air. Pressure was monitored continuously by a gas transducer (Vallidyne

Model No. 8262036) outside the chamber and adjusted manually if necessary. The

average chamber pressure for the 7-days of LBPP was 19 ± 0.3 mmHg. Passage of

outflow through a tall water reservoir served to buffer small variations in

pressure. Air temperature was maintained at 29°C by passage of air through a

thermostatically controlled water bath.

Vascular and lower chamber pressure signals were processed by

Hewlett-Packard conditioners (8805D) with chamber pressure and central venous

pressure also being preamplifled. Chamber temperature as well as delivery of

triggering signals for the solenoid valve, fraction collector and strlp-chart

recorder were controlled by computer (DEC MINC 11/23). Simultaneous study of

up to 4 animals was enabled by a custom multiplexing system (Auburn Instruments)

which interfaced with the computer via a Hewlet-Packard Monitoring System

(7754A).

Osmolality of both plasma and urine was measured by freezing-point

depression (Precision Systems No. 5004). Plasma and urine concentrations of

sodium and potassium were measured with a flame photometer (Instrumentation

Laboratories model 143). Plasma aldosterone concentrations were measured by a

mtcrovolume radioimmunoassay procedure based on the technique of Sancho and Haber

(23).

Statistical analysis consisted of paired comparison of LBPP and time control

data at each time period using Student's t-test. In addition, a similar

#
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comparison was made except that all values were expressed as a change from Day

0 (control day in both the LBPP and time control protocols). Because of

variation in catheter resistance and/or tip position between studies, changes

in arterial and venous pressures due to onset and offset of LBPP were evaluated

by paired comparison of data obtained on day 0 vs. day 1 and day 7 vs. day 8

(Student's t-test). Values are reported as mean ± SE and were considered

significantly different when P < 0.05.

¢
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RESULTS

Average daily urinary responses for both the LBPP and time control

experiments are presented in Fig. 2. Chronic exposure of squirrel monkeys to

LBPP was associated with an early increase in urine volume and sodium excretion

along with a decrease in urine osmolallty. These effects were limited to the

first 1-2 days of stimulus after which these variables were not different from

time control values for the remaining period of LBPP. In the 24 hrs following

removal of pressure, a modest trend toward fluid conservation occurred; this

trend was also observed on the same day in time control experiments.

Sodium excretion increased significantly in the 24 hrs following initial

exposure to LBPP (Fig. 2). In this period, monkeys excreted 3.6 _ 0.6 mEq/d of

sodium as compared to 1.6 _ 0.4 mEq/d in the control series. On days 2 and 3

of LBPP, sodium excretion decreased by about one-half the value on Day 1 and

dropped even further to a new steady-state level on days 4-7. However, sodium

excretion was significantly greater than in time controls only on day I.

Comparison of LBPP and time control data based on the changes in sodium excretlon

from the prestlmulus control day (day O) to each subsequent day revealed that

the increase in sodium excretion during LBPP remained significantly elevated
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through day 3 (P < 0.05). This finding, however, appears to be due to the lower

level of sodium excretion on day 0 during the LBPP protocol rather than a

persistent natrluresls due to LBPP. On the day following wlthdrawl of pressure

(day 8), sodium excretion in the LBPP series was decreased compared to the value

during the last day of LBPP (0.6 _+ 0.2 vs. 1.4 +_ 0.2 mEq/d); this change was

significant based on a paired comparison (P<0.025). The decrease in sodium

excretion observed from days 7 to 8 in the time control series was not

significant (1.8 _+ 0.5 vs. 1.4 _+ 0.6 mEq/d).

During the first day of LBPP, urine volume was 50.2 _+ 8.7 ml, a significant

increase over both day 0 (29.8 ± 4.4 ml) and the time control value for this day

(29.6 + 2.8 ml) (Fig. 2). Although urine volume remained notlcably higher on

days 2 and 3 of LBPP, these differences were significantly different from time

control values only when expressed as changes from the prestlmulus control day

(day O) (P<O.02). For the remaining days of the study (days 3-8), a similar

pattern of urine output was observed in the LBPP and time control protocols.

Although urine volume in the 24 hr period following removal of pressure (day 8)

decreased by 28% (I0.4 ml) in the LBPP study, a similar and perhaps serendipitous

change also occurred in the control group for this day (20%, 7.3 ml). As was

the case for sodium excretion, the decrease in urine volume from days 7 to 8 was

significant only in the LBPP series (P<O.05).

Initiation of LBPP induced a marked fall in 24 hr urine osmolallty that was

significantly below the value measured in the time control series for day 1 (972

+ 104 vs. 1575 + 129 mosm/kg H20; P < 0.01) (Fig. 2). Osmolallty remained

significantly depressed on the second day of LBPP (1450 +_ 119 vs. 1079 _+ II0

mosm/kg HzO ; P < 0.03). In accordance with urine volume data, the time control

series displayed a trend towards a more dilute urine after day 2 negating the

!
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apparent continuation of diuresis observed in the LBPP series. Values were not

different between LBPP and time control protocols from Days 3 through 8.

However, a significant increase in urine osmolallty was observed upon wlthdrawl

of pressure in the LBPP group (day 7 vs. day 8; 1188 ± 60 vs. 1272 ± 56 mosm/kg

H20 ; P < 0.05). There were no significant differences between LBPP and time

control series in terms of free water clearance or osmolar clearance for any day

of the study. This was also true when data were analyzed as the change from day

0 to any subsequent day.

The urinary excretion data in Fig. 3 represent values obtained every 2 h

for the control day (Day 0) and the first two days of LBPP (Days 1 and 2).

Sodium excretion was slgnlflcantly increased in response to LBPP at several

points during the first 24 h but was similar to time control on Day 2. Likewise,

urine volume was increased only during the first half of the first day of LBPP.

In contrast, the decrease in urine osmolallty in the LBPP series was persistent

for most of the first 48 hrs of pressure. The time of the maximal urinary

response to LBPP was quite variable from animal to anlmal but always occurred

within the first 24 h. The average peak diuretic and natriuretlc responses

occurred within 1-2 hours of each other in all experiments. The maxlmumdecrease

in urine osmolallty temporally coincided with maximum sodium and water output

in only 4 of ? animals.

Daily sodium balance calculated as dietary intake minus urinary output is

presented in Fig. 4. The constancy of body temperature and absence of diarrhea

in all experiments allowed for the calculatlon of balance data without accounting

for insensible losses, l_hen anlmals were subjected to the LBPP protocol, a

negative sodium balance was observed on the first day of 13PP that was less than

the same day of the time control protocol (P < 0.02). This observation was due

I
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to a combination of increased urinary sodium excretion and decreased intake.

On the first day of LBPP, animals consumed less food than control although this

difference was of borderline significance (15.2 ± 1.2 & vs. 25.3 ± 4.2 g; 0.I0

< P < 0.05). There were no differences in sodium balance between LBPP and time

control series for any other day, although animals in the LBPP series tended to

retain more sodium on days 5-7 (0.01 < P < 0.05).

Mean dally water balance calculated as water intake minus urinary volume

is also shown in Fig. 4. As observed for sodium, water balance was significantly

less on day i in the LBPP series as compared to time controls. Water intake in

the two protocols was not different on any individual day of the two studies so

that the negative water balance observed on day 1 of the LBPP series was solely

due to increased urinary output.

Urlnarypotasslumexcretlon was largely unaffected by LBPP as values on each

day were not different between the time control and LBPP series (Fig. 5). When

calculated as the change from the prestlmulus control day (day 0) to each

subsequent day, again there were no differences between protocols. Although

daily averages were not different, removal of pressure in the LBPP series

resulted in a decrease in 24 hr potassium excretlon not observed in time controls

(day 7 vs. day 8; 4.5 ± 0.4 vs. 2.9 ± 0.4 mEq/d; P < 0.05).

Plasma aldosterone values measured each day at 13:00 and also at 17:00 on

day 1 are presented in Fig. 6. Data obtained in six animals revealed that there

were no significant differences for any time period between the LBPP and time

control series. However, a slight trend towards decreased aldosterone levels

was observed in animals undergoing LBPP; when data were calculated as a change

from day O, plasma aldosterone concentrations were decreased on days 4 and 6

compared with the changes observed in time controls (P < 0.05). Hematocrit,

I
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plasma sodium and potassium concentrations and osmolality did not change in

response to LBPP and were not different between the two series of experiments

on any day (data not shown).

An elevation of central venous pressure (CVP) was observed in 6 of the 7

animals following the application of LBPP. The average maximal increase was 1.8

± 0.5 mmHg (P < 0.02 versus prestlmulus) and occurred within 20 min of initiation

of LBPP. CVP returned to prestlmulus values within 4 hours. Due to zero

shifting in the transducer system, CVP was only measured periodically throughout

the daytime so that the transducer could be manually zeroed immediately prior

to taking a reading. Mean dally CVP values were unchanged by LBPP. Similarly,

when CVP in each group was expressed as a difference between the prestlmulus day

and each subsequent day, there were no differences between the two series of

experiments over the course of the study. When LBPP was withdrawn, a decrease

in CVP occurred within 30 minutes in every animal; the maximum poststtmulus

decline in CVP averaged 1.96 + 0.5 mmHg (P < 0.001).

Mean arterial pressure (AP) was measured in 5 monkeys undergoing the LBPP

protocol. During the initial control day AP averaged 108 +_ 5 mmHg. In all of

these animals a very brief increase in AP occured 5 to 25 mln after onset of

I_PP; the average maximum change in AP was 10.2 +_ 3.9 mmHg. Daily averages of

arterial pressure were not different on days 0 through 7. However, in four

animals in which data were available, a significant decrease of 16.3 _+ 5.3 mmHg

(P < 0.01) was observed the day after removal of LBPP (day 8) compared to the

last day of LBPP (day 7). This decrease was evident within two hrs after LBPP

was withdrawn and was sustained throughout the entire day after withdrawl of the

stimulus.
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DISCUSSION

We report for the first time basic renal excretory responses to a prolonged

(7 day) stimulus for central volume expansion in the nonhuman primate.

Furthermore, to evaluate the influence of chalr-slttlng, we compared these

responses to time control data in which the same animals were studied under

identical conditions with the exception that LBPP was not applied. Prolonged

exposure of the squirrel monkey to LBPP resulted in a two-phase response: an

acute phase characterized by a natrluresls and dluresls that was confined to the

first 24-48 hours of the stimulus, and an adaptive phase lasting for the

remainder of the stimulus during which urlnaryexcretlon patterns underLBPP were

not different from those observed in the same animals under control conditions.

The renal responses were not associated with changes in plasma aldosterone

levels. In addition, a modest renal conservation of fluid and electrolytes was

detected following removal of the stimulus.

Our results agree with the 5-15% reduction in plasma volume observed in

spaceflight and the water-lmmerslon and head-down tilt models (8, 9, 16, 18).

Assuming isotonic fluid was lost from the extracellular compartment as is

suggested by the absence of a change in plasma osmolallty and sodium

concentration, the increase in sodium excretion on the first day of LBPP of 2

mEq would be associated with a total fluid loss on the order of 14 ml. The

observed increase in urine volume of 21 ml would suggest a slightly larger volume

lost. These estimations represent roughly 13-19% of the total plasma volume or

5-7% of the total extracellular fluid volume. It also seems likely that

interstitial fluid mobilized into the vascular compartment prevented any increase

in hematocrlt which would normally accompany an acute reduction in plasma volume.

Such a shift of fluid would be expected glven the hydrostatic gradients resulting



12

from the decrease in peripheral venous pressure and increase in external tissue

pressure accompanying LBPP.

The lack of a change In plasma aldosterone levels durlngLBPP is in contrast

to earlier findings using thls model. Kass and Moore-Ede previously reported

a significant decline in plasma aldosterone and potassium concentration at 4 and

24 hrs after initiation of the stimulus but did not examine time controls (12).

Our new findings reveal there were clearly no differences in aldosterone levels

or plasma potassium concentrations when comparing LBPP and time control

protocols. Although data from human models and spaceflight do not support a role

for the renln-angiotensln-aldosterone system in mediating the renal response to

central volume expansion associated with weightlessness, a definitive role for

this system cannot be eliminated at present due to the lack of data from the

critical early hours of weightlessness. In humans, several laboratories have

reported the lack of any early changes in either plasma renln activity or

aldosterone concentration in response to head-down tilt (9, 20, 24). In

water-lmmerslon studies, significant decreases in these parameters have been

reported but are not temporally related to the urinary response (3, 7, 8, 21).

Factors such as changes in glomerular filtration rate (GFR), renal nerve

activity, atrial natrluretlc factor (ANF) and antldluretlc hormone (ADH) levels

may be involved in the acute renal response to LBPP. Evidence for an increase

in GFR in response to central volume expansion is mixed, but given that GFR did

not change in response to the maximal stimulus of heat-out water immersion or

6° head-down tilt, it is unlikely that changes in GFR occurred under the more

modest stimulus of LBPP (3, 18, 24). Although there is no clear evidence to

suggest that the renal nerves may be involved In this phenomenon, further study

is necessary. A role for ANF in mediating the natrluretlc and diuretic response

!
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to LBPP may be a more attractive hypothesis since this hormone is known to be

released in response to head-down tilt and water immersion (5, 19). The role

of ADH in the renal response to central volume expansion is not clear. Gilmore

and co-workers have reported that volume expansion does not affect ADH levels

In the non-human primate (6). However, changes in plasma ADH are observed in

the various models for weightlessness although a true causal relation to the

natriuretic and diuretic response has not been developed (3, 4, 6, 21). It is

teleologlcally attractive to postulate that the number of renal effectors

involved in the response to central volume expansion depends on the strength of

the stimulus. Accordingly, the 20mmHgLBPP model most likely causes the mildest

central volume expansion and thus may "unmask" modulators not immediately

apparent with the stonger and more complex stlmulul of water immersion or

head-down tilt.

Our study was designed to examine more prolonged periods of central volume

expansion (7 days) in an attempt to more closely mimic conditions of a typical

Space Shuttle mission. The latter phase of study is more difficult to interpret

than the initial acute phase since we observed that after the third day of LBPP,

excretory and hemodynamlc variables achieved a relative steady-state and was

similar to time controls. A previous Investigation by this laboratory using the

same model indicated that the natriuretic and diuretic responses were sustained

throughout the 4 day period of LBPP, albeit at a reduced level from the first

day of the stimulus (12). We extend those initial findings by determining the

influence of prolonged chalr-sltting on renal and cardiovascular function in the

same animals that had undergone the LBPP protocol. From these data It is clear

that a gradual increase in urine volume and decrease In osmolality occur over

the duration of the 7 day observation period; the mechanism producing this

!
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response to prolonged chair-sitting is not understood at present. In any event,

the apparent maintenance of the natrluresls and diuresis when viewing the LBPP

urinary response can be accounted for in the control series. Following the

Inital loss of plasma volume, urlnaryexcretlon of solute and water return toward

the control excretion values. Therefore, our data suggest that the animals come

into balance again but at an apparently reduced extracellular fluid volume. This

idea Is supported by the constancy of sodium and water balance and its

equivalence to that measured in time controls throughout this adaptive period

(days 2-7).

There are clear differences in the time course of adaptation for the

excretory variables. While sodium excretion tends to return to baseline rapidly

(within a few hours), urine volume and osmolaltty drift more slowly downward over

the first 24-48 hrs of LBPP. As with the acute response, further studies will

be required to determine the effectors that control the reduction in renal sodium

and water excretion and the return of urinary concentrating ability during the

adaptive phase. Clearly a rise in plasma aldosterone does not occur and thus

the return to normal sodium balance must be mediated by other mechanisms.

If exposure to 0g and the models for weightlessness produce a reflex renal

response to decrease the effective circulating vascular volume, then reexposure

to ig or removal of the stimulus in an appropriate model should set in motion

a series of responses to the opposite challenge--an inadequately filled vascular

space. Data from the human models and spaceflight suggest that hypovolemia does

occur and that the renal conservation of fluids and electrolytes is probably

driven by increasing levels of aldosterone and ADH (9, 13, 16, 17). Data from

the present study are not conclusive perhaps due to the possible serendipitous

changes in excretory patterns in the time controls on the day equivalent to that

'j
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following removal of LBPP. The clear trend towards fluid conservation In the

LBPP series on the recovery day was significant when compared to values for the

last day of pressure but not when the two series were directly compared. In

contrast to what may have been expected, plasma aldosterone concentrations in

the LBPP series did not Increase significantly on this day. Obviously, further

study of a more prolonged period of recovery will allow a more definitive

conclusion about the mechanisms involved In the recovery period.

The hemodynamlc response to LBPP onset was characterized by a variable and

relatively short-llved elevation In CVP. Given the large compliance of the

central venous reservoir, a relatively large cephalad shift of fluid is Indicated

by the average peak Increase In CVP of 1.8 mmHg. Mean arterial pressure also

briefly increased but may be a startle reaction to the onset of air flow through

the lower chamber. The transient nature of the CVP elevation would suggest that

a vasodllatory mechanism such as a withdrawl of sympathetic tone and/or an

increased release of ANF may offset the increase In central vascular volume.

The nature of the effector llmb linking the cardiovascular and renal systems is

not readily apparent from these studies. Although the rise in both CVP and AP

was modest and transient, the renal response was marked and continued throughout

the first 24-48 hrs of LBPP.

We observed that both CVP and AP decreased following removal of LBPP.

These changes were, In fact, much more consistent and of greater magnitude than

those following stimulus application. Furthermore, the persistence of AP below

that of the last day of pressure should provide a strong stimulus for renal salt

and water conservation. Thls situation Is similar to the cardiovascular

decondltionlng present in astronauts returning from spaceflight (2). In the LBPP

model as well as during spaceflight, however, it is unclear whether these

I
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recovery effects occur secondary to a reduced circulating volume that is not

beln E rapidly replenished or consequent to a resetting of baroreceptor or other

control mechanisms produced by the prolonged central vascular congestion.

In summary, this study provides the first renal and cardiovascular data from

a non-human primate model for 7-day exposure to a simulated weightless

environment. We provide results indicating that chronic exposure of the squirrel

monkey to a LBPP-induced central volume expansion results in a two-phase

response. During the first 24-48 hrs, natrluresls and dluresls occur which

reduces the effective extracellular fluid volume. As a result of the reduction

of vascular volume, the animals return to salt and water balance and remain so

for the duration of the stimulus. Removal of the stimulus results in a modest

conservation of fluid and electrolytes and a reduction in mean arterial pressure

that appears similar to the syndrome of cardiovascular deconditioning appearing

in astronauts upon their return to Ig from spaceflight.
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FIGURE LEGENDS

Flg.l Diagram of metabolism chair custom-deslgned for the squirrel monkey.

Fig.2 Daily urinary sodium excretion, volume, and osmolallty during seven days

(days 1-7 as denoted by black bars) of lower body positive pressure (LBPP) or

in the absence of LBPP (control). Days 0 and 8 are pre- and post-pressure

days, respectively, in the LBPP series. Values are 24 hr means _ SE for seven

animals. * indicates P<O.05 vs. paired control day.

Fig.3 Urinary sodium excretion, volume, and osmolallty one day prior to (day

O) and during the first two days of lower body positive pressure (LBPP) (days

i and 2). Controls did not receive LBPP. Black bars denote hours of

darkness. Values are means + SE for two hour urine collection periods in

seven animals. * indicates P<0.05 vs. paired control value.

Fig.4 Water and sodium balance during seven days (days 1-7 as denoted by black

bar) of lower body positive pressure (LBPP) or in the absence of LBPP

(control). Days 0 and 8 are pre- and post-pressure days, respectively, in the

LBPP series. For both variables, balance was calculated as the difference

between intake and urinary excretion. Values are 24 hr means _ SE for seven

animals. * indicates P<0.05 vs. paired control day.

Fig.5 Daily urinary potassium excretion during seven days (days I-7 as denoted

by black bars) of lower body positive pressure (LBPP) or in the absence of

LBPP (control). Days 0 and 8 are pre- and post-pressure days, respectively,

in the LBPP series. Values are 24 hr means + SE for seven animals. *

indicates P<O.O5 vs. paired control day.

Fig.6 Plasma aldosterone concentration during seven days (days 7-7 as denoted

by black bar) of lower body positive pressure (LBPP) or in the absence of LBPP

(control). Day 8 represents a post-pressure day in the LBPP series. Blood
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samples used for analysis were drawn each day at 13:00 h with an additional

sample being taken at 15:00 h on day 1. Values are means ± SE for seven

animals.
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